0.3은 유리수입니다.
유리수에는 정수와 분수가 포함될 수 있습니다.
1.
(1) 정수에는 양의 정수, 0 및 음의 정수가 포함됩니다.
(2) 분수에는 다음이 포함됩니다. 양의 분수와 음의 분수를 총칭하여 분수라고 합니다.
2. 양의 유리수, 음의 유리수, 0.
실수는 유리수와 무리수로 구분됩니다. 유리수와 무리수 사이에는 두 가지 주요 차이점이 있습니다.
(1) 유리수는 정수(양의 정수, 0, 음의 정수)와 분수(양의 분수, 음의 분수)로 나눌 수 있습니다. 유리수와 무리수 모두 소수 형식으로 작성될 때 유리수는 4=4.0=0.8과 같이 유한 소수 또는 무한 반복 소수로 작성될 수 있습니다. (양의 정수, 양의 분수), 0, 음의 유리수(음의 정수, 음의 분수).
무리수는 √2=1.4142..., π=3.1415926.... 과 같이 무한 비반복 소수로만 쓸 수 있습니다. 이에 근거하여 사람들은 무리수를 무한 비반복 소수로 정의합니다. 소수.
(2) 모든 유리수는 두 정수의 비로 쓸 수 있지만, 무리수는 두 정수의 비로 쓸 수 없습니다. 따라서 무리수를 비비율수(non-ratio number)라고도 합니다.
확장 정보:
유리수는 정수와 분수의 집합입니다. 정수는 분모가 1인 분수로 간주될 수도 있습니다. 유리수의 소수 부분은 유한하거나 무한히 반복되는 숫자입니다. 유리수가 아닌 실수를 무리수라고 합니다. 즉, 무리수의 소수 부분은 무한한 비순환수입니다.
유리수 집합은 대문자 Q로 나타낼 수 있습니다. 그러나 Q는 유리수를 나타내지 않습니다. 유리수 집합과 유리수는 서로 다른 개념입니다. 유리수 집합은 모든 원소가 유리수인 집합이고, 유리수 집합은 유리수 집합의 모든 원소입니다.
유리수 집합은 정수 집합의 확장입니다. 유리수 집합에서는 덧셈, 뺄셈, 곱셈, 나눗셈(제수가 0이 아님)의 네 가지 연산을 방해 없이 사용할 수 있습니다. 유리수 크기의 순서에 관한 규정: ?가 양의 유리수인 경우 ?보다 크거나 작은 경우에는 ?로 기록됩니다. 두 개의 동일하지 않은 유리수는 비교할 수 있습니다.
유리수 집합과 정수 집합의 중요한 차이점은 유리수 집합은 조밀한 반면, 정수 집합은 조밀하다는 것입니다. 유리수를 크기 순으로 배열한 후, 임의의 두 유리수 사이에는 다른 유리수가 있어야 합니다. 이것이 바로 밀도입니다. 정수 집합에는 이 속성이 없습니다. 인접한 두 정수 사이에는 다른 정수가 없습니다.
유리수는 실수의 가까운 부분 집합입니다. 모든 실수는 임의로 가까운 유리수를 갖습니다. 관련된 속성은 유리수만 유한 연속 분수로 축소될 수 있다는 것입니다. 순서에 따라 유리수는 순서 토폴로지를 갖습니다. 유리수는 실수의 (밀도가 높은) 부분 집합이므로 부분 공간 토폴로지도 갖습니다.
참조: 바이두 백과사전 - 유리수